Statistics - 01 Introduction

Eric Stemmler
Khovd University
20.01.2021

(1) Personal Introduction

(2) Learning Goals
(3) Why is statistics important?
(4) Vocabulary

(5) Summary

Section 1

Personal Introduction

Personal Introduction

- Eric Stemmler
- M.Sc. Computational Science (Technical University of Chemnitz)
- M.Sc. Human Factors (Technical University of Berlin)
- Statistics, Data Science

Contact

- email (en): rcst@posteo.de
- email (mn): byambaa3007@yahoo.com
- Room: 415 (please send an email before visiting)
- phone: +976 88683742

Please provide your name and email so I can send you my presentations and other material

Personal Introduction

What is statistics?
Statistics is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data.

Cambridge Dictionary

Personal Introduction

- What is your experience with statistics?
- What kind of data do you analyse and how did you do it?
- About what topics do you want to learn about?

Section 2

Learning Goals

Learning Goals

- Formulate statistical modelling problems
- Exploratory data analysis
- Basic computations in R

Section 3

Why is statistics important?

Why is statistics important?

- Learning from data about the world
- Randomness is omnipresent
- Estimation of uncertainty vs. establishing facts - Making decisions

Why is statistics important?

- Learning from data about the world
- Randomness is omnipresent
- Estimation of uncertainty vs. establishing facts - Making decisions

Why is statistics important?

- Learning from data about the world
- Randomness is omnipresent
- Estimation of uncertainty vs. establishing facts
- Making decisions

Why is statistics important?

- Learning from data about the world
- Randomness is omnipresent
- Estimation of uncertainty vs. establishing facts
- Making decisions

Section 4

Vocabulary

Subsection 1

Randomness

Randomness

Figure 1: Uncertainty: Flipping a coin

Figure 2: Variation: blindly drawing balls from an urn

Randomness

Figure 1: Uncertainty: Flipping a coin

Figure 2: Variation: blindly drawing balls from an urn

- randomness can never be removed completely
- Law of large numbers \rightarrow Estimation of parameters

Randomness

Figure 1: Uncertainty: Flipping a coin

Figure 2: Variation: blindly drawing balls from an urn

- randomness can never be removed completely
- Law of large numbers \rightarrow Estimation of parameters

Randomness

What are examples for infinite populations and why?

- probability for a coin to land on head

Randomness

What are examples for infinite populations and why?

- probability for a coin to land on head
- (Human) gender ratio

Randomness

What are examples for infinite populations and why?

- probability for a coin to land on head
- (Human) gender ratio
- Measurement errors in physics

Randomness

What are examples for infinite populations and why?

- probability for a coin to land on head
- (Human) gender ratio
- Measurement errors in physics
- Effectiveness of a vaccine

Randomness

What are examples for infinite populations and why?

- probability for a coin to land on head
- (Human) gender ratio
- Measurement errors in physics
- Effectiveness of a vaccine
- The probability of getting cancer from smoking

Randomness

What are examples for infinite populations and why?

- probability for a coin to land on head
- (Human) gender ratio
- Measurement errors in physics
- Effectiveness of a vaccine
- The probability of getting cancer from smoking
- Temperature-dependent sex determination of Crocodylus niloticus

Randomness

Important terms:

- variation:
- uncertainty:
- trial:
- population:
- population parameter:

Randomness

Important terms:

- variation: the outcome of a sample varies randomly
- uncertainty:
- trial:
- population:
- population parameter:

Randomness

Important terms:

- variation: the outcome of a sample varies randomly
- uncertainty: lack of knowledge of about a true value
- trial:
- population:
- population parameter:

Randomness

Important terms:

- variation: the outcome of a sample varies randomly
- uncertainty: lack of knowledge of about a true value
- trial: the realization of an experiment
- population:
- population parameter:

Randomness

Important terms:

- variation: the outcome of a sample varies randomly
- uncertainty: lack of knowledge of about a true value
- trial: the realization of an experiment
- population: all possible events or items
- population parameter:

Randomness

Important terms:

- variation: the outcome of a sample varies randomly
- uncertainty: lack of knowledge of about a true value
- trial: the realization of an experiment
- population: all possible events or items
- population parameter: the true value

Randomness

Demonstration: Real vs. fake coin flips

- 2 judges
- 1 recorder
- 2 groups
- group 1: note down the result of 100 real coin flips
- group 2: note down 100 invented/ fake coin flips that look random

Randomness

Demonstration: Real vs. fake coin flips each group:

(1) count the length of the longest run
(2) count the number of runs
(3) mark the location on the plot

Randomness

Demonstration: Real vs. fake coin flips

 each group:(1) count the length of the longest run
(2) count the number of runs
(3) mark the location on the plot
example: $0,0,1,1,1,1,0,0,0,1,1$

- length of longest run: 4

Randomness

Demonstration: Real vs. fake coin flips

 each group:(1) count the length of the longest run
(2) count the number of runs
(3) mark the location on the plot
example: $0,0,1,1,1,1,0,0,0,1,1$

- length of longest run: 4
- no. runs: 4

Simulation Results

Figure 3: Length of longest run vs. number of runs from 2000 simulated experiments of 100 coin flips.

Subsection 2

Coin flipping

Coin flipping

Figure 4: Probability tree for the outcomes of a coin flipping experiment

Coin flipping

Exercise: What is the probability of getting 5 ?

Coin flipping

Exercise: What is the probability of getting 5 ?
Exercise: What is the probability of getting 5 heads in a row during 100 coin flips?

Coin flipping

Exercise: What is the probability of getting 5 ?
Exercise: What is the probability of getting 5 heads in a row during 100 coin flips?

Hint: How many possibilities for 3 heads in a row exist in 10 coin flips? $10-(3-1)=8$

Coin flipping

Exercise: What is the probability of getting 5 ?
Exercise: What is the probability of getting 5 heads in a row during 100 coin flips?

Hint: How many possibilities for 3 heads in a row exist in 10 coin flips?
$10-(3-1)=8$
Solution: $96 \times(1 / 32)^{1} \times(31 / 32)^{95} \approx 0.15$
Note: This is only the probability of getting 5 heads exactly once!

Coin flipping

Exercise: What is the probability of getting 5 ?
Exercise: What is the probability of getting 5 heads in a row during 100 coin flips?

Hint: How many possibilities for 3 heads in a row exist in 10 coin flips?
$10-(3-1)=8$
Solution: $96 \times(1 / 32)^{1} \times(31 / 32)^{95} \approx 0.15$
Note: This is only the probability of getting 5 heads exactly once!
Binomial Distribution: $p=\binom{n}{k} \theta^{k}(1-\theta)^{n-k}$

Subsection 3

Binomial Distribution

Binomial Distribution

$$
\begin{equation*}
p(k \mid n, \theta)=\binom{n}{k} \theta^{k}(1-\theta)^{n-k} \tag{1}
\end{equation*}
$$

Binomial Distribution

$$
\begin{equation*}
p(k \mid n, \theta)=\binom{n}{k} \theta^{k}(1-\theta)^{n-k} \tag{1}
\end{equation*}
$$

- k - number of "successes"
- n - number of trials
- θ - probability of "success"

Subsection 4

Estimating fish population

Estimating fish population

Figure 5: Fishes in a lake

Estimating fish population

Definition

A random sample is a subset of a population such that each individual random sample is chosen with equal probability.

Subsection 5

Modelling Fish Population - Binomial distribution

Modelling Fish Population - Binomial distribution

- (finite) population of fish in a lake of size N.
- One possible choice of a model is the Binomial distribution

- sampling/ fishing: y out of N in total
- θ is capture probability
- N and θ are generally called parameters
- y is called data

Modelling Fish Population - Binomial distribution

- (finite) population of fish in a lake of size N.
- One possible choice of a model is the Binomial distribution

$$
p(y \mid N, \theta)=\binom{N}{y} \theta^{y}(1-\theta)^{N-y}
$$

- sampling/ fishing: y out of N in total
- θ is capture probability
- N and θ are generally called parameters
- y is called data

Modelling Fish Population - Binomial distribution

- (finite) population of fish in a lake of size N.
- One possible choice of a model is the Binomial distribution

$$
p(y \mid N, \theta)=\binom{N}{y} \theta^{y}(1-\theta)^{N-y}
$$

- sampling/ fishing: y out of N in total
- θ is capture probability
- N and θ are generally called parameters
- y is called data

Modelling Fish Population - Binomial distribution

- (finite) population of fish in a lake of size N.
- One possible choice of a model is the Binomial distribution

$$
p(y \mid N, \theta)=\binom{N}{y} \theta^{y}(1-\theta)^{N-y}
$$

- sampling/ fishing: y out of N in total
- θ is capture probability
- N and θ are generally called parameters
- y is called data

Modelling Fish Population - Binomial distribution

- (finite) population of fish in a lake of size N.
- One possible choice of a model is the Binomial distribution

$$
p(y \mid N, \theta)=\binom{N}{y} \theta^{y}(1-\theta)^{N-y}
$$

- sampling/ fishing: y out of N in total
- θ is capture probability
- N and θ are generally called parameters

Modelling Fish Population - Binomial distribution

- (finite) population of fish in a lake of size N.
- One possible choice of a model is the Binomial distribution

$$
p(y \mid N, \theta)=\binom{N}{y} \theta^{y}(1-\theta)^{N-y}
$$

- sampling/ fishing: y out of N in total
- θ is capture probability
- N and θ are generally called parameters
- y is called data

Modelling Fish Population - Binomial distribution

Subsection 6

Data Set

Data Set

Table 1: Collected fish data: number of caught fish in 5 locations at 3 different time points.

	sampling occasions		
site	t 1	t 2	t 3
1	2	1	2
2	3	5	5
3	0	1	1
4	2	2	1
5	3	3	3

Data Set

Table 1: Collected fish data: number of caught fish in 5 locations at 3 different time points.

	sampling occasions		
site	t 1	t 2	t 3
1	2	1	2
2	3	5	5
3	0	1	1
4	2	2	1
5	3	3	3

- The total number of fish over all locations varies between 10 to 12 .

Data Set

Figure 7: Histogram of the collected fish capture data.

Subsection 7

Fitting the model

Fitting the model

```
## Inference for Stan model: fish.
## 4 chains, each with iter=4000; warmup=1000; thin=1;
## post-warmup draws per chain=3000, total post-warmup draws=12000.
##
\begin{tabular}{lrrrrrrrrr} 
\#\# & mean & se_mean & sd & \(2.5 \%\) & \(25 \%\) & \(50 \%\) & \(75 \%\) & \(97.5 \%\) & n_eff
\end{tabular} Rhat
##
## Samples were drawn using NUTS(diag_e) at Mon Jan 18 18:19:08 2021.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
```


Subsection 8

Inference - Parameters as estimates

Inference - Parameters as estimates

Inference - Parameters as estimates

Inference - Parameters as estimates

Inference - Parameters as estimates

Section 5

Summary

Summary

- the role of statistics
- vocabulary: uncertainty, variation, population, parameters, data probability distributions
- parameter estimation

Summary

- the role of statistics
- vocabulary: uncertainty, variation, population, parameters, data probability distributions
- parameter estimation

Summary

- the role of statistics
- vocabulary: uncertainty, variation, population, parameters, data
- probability distributions
- parameter estimation

Summary

- the role of statistics
- vocabulary: uncertainty, variation, population, parameters, data
- probability distributions
- parameter estimation

Ingram Olkin, A John Petkau, and James V Zidek. A comparison of n estimators for the binomial distribution. Journal of the American Statistical Association, 76(375):637-642, 1981.

