Introduction to Statistics and R

Computing with and plotting of data tables

Eric Stemmler

Khovd University

24.03.2021

- 1 Recap: Accessing data tables
- 2 Aggregating grouped data
- 3 Data Visualization: Plotting
- **4** Summary
- 6 Exercises

Section 1

Recap: Accessing data tables

Recap: Accessing data tables

- Accessing columns from a data.table
 - Single columns: e.g. dt\$colA
 - Multiple columns: e.g. dt[, c("colA", colB")]
- Accessing rows/ subsetting a data.table
 - By row number: e.g. dt[1:3] returns first 3 rows
 - By variable values: e.g. dt[colA > 3 & colB < 2]

Section 2

Aggregating grouped data

Calculating measures of columns

```
library(data.table)
dt <- fread("age-guessing.csv")</pre>
dt[, mean(card 1)]
## [1] -2.3
dt[, median(card 1)]
## [1] -1.5
dt[, var(card_1)]
## [1] 24.01111
dt[, var(card_1) + var(card_2)]
   [1] 120.2444
```

- How to categorize data? Use factors!
- factors are categories. Example: "mammals"
 - Horse
 - Sheep
 - Cow
 - Goat
- different categories in a factor are called "levels"
- In R we say: factor mammals has levels Horse, Sheep, Cow, Goat

mammal	age	weight
horse	2	716.26
horse	3	546.82
horse	2	452.83
sheep	2	94.58
sheep	3	100.56
sheep	3	91.08
cow	3	747.53
cow	2	587.70
cow	3	588.39
goat	1	69.63
goat	2	79.12
goat	2	26.48

```
Example: Create a factor in R

my_factor <- factor(x = c("horse", "sheep", "cow", "goat"))
class(my_factor)

## [1] "factor"

my_factor</pre>
```

```
## [1] horse sheep cow goat
## Levels: cow goat horse sheep
```

Use function repeat function rep() to create multiple entries of categories: Parameter each defines how many times *each* item is repeated

```
# use rep() to avoid too much typing:
my_categories <- rep(x = c("horse", "sheep", "cow", "goat"),
        each = 3L)
my_categories</pre>
```

```
## [1] "horse" "horse" "sheep" "sheep" "sheep" "## [7] "cow" "cow" "goat" "goat" "goat"
```

... or using parameter times to repeat the whole sequence:

```
# use rep() to avoid too much typing:
my_categories <- rep(x = c("horse", "sheep", "cow", "goat"),
        times = 3L)
my_categories</pre>
```

```
## [1] "horse" "sheep" "cow" "goat" "horse" "sheep"
## [7] "cow" "goat" "horse" "sheep" "cow" "goat"
```

```
... and then convert to factor
my_categories <- factor(my_categories)
my_categories</pre>
```

```
## [1] horse sheep cow goat horse sheep cow goat
## [9] horse sheep cow goat
## Levels: cow goat horse sheep
```

Note: Levels are sorted alphabetically

Calculating measures per groups

Calculating e.g. the mean of column weight:

```
dt[, mean(weight)]
```

```
## [1] 341.7474
```

... not very meaningful, since these are different mammals. How to calculate for each mammal type?:

```
dt[, mean(weight), by = mammal]
```

```
## 1: horse 571.97033
## 2: sheep 95.40519
## 3: cow 641.20540
## 4: goat 58.40853
```

Calculating measures per groups

Using by: Do anything you do in rows on columns for each different value in group separately

```
dt[rows, columns, by = group]
```

Calculating measures per groups

Calculating e.g. the mean of column weight:

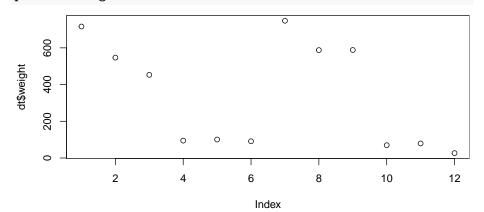
```
dt[, mean(weight)]
```

```
## [1] 341.7474
```

... not very meaningful, since these are different mammals. How to calculate for each mammal type?:

```
dt[, mean(weight), by = mammal]
```

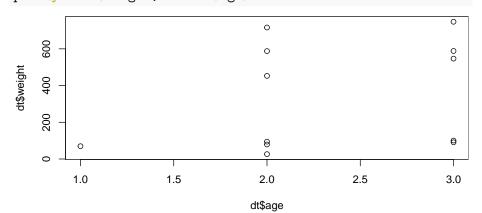
```
## 1: horse 571.97033
## 2: sheep 95.40519
## 3: cow 641.20540
## 4: goat 58.40853
```


Section 3

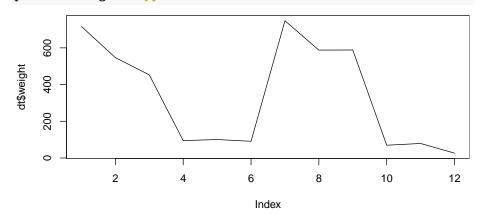
Data Visualization: Plotting

Plotting in R

Scatterplot: Plot values from **one** or two columns


plot(dt\$weight)

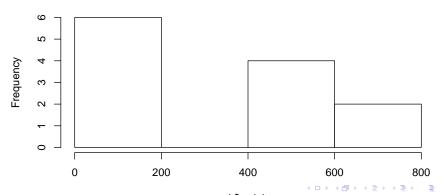
Plotting in R


Scatterplot: Plot values from one or **two** columns

$$plot(y = dt\$weight, x = dt\$age)$$

Different plot types

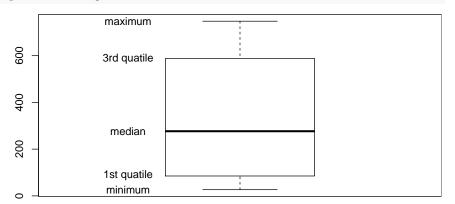
Line plot: Like scatterplot where points are connected by lines



Different plot types

Histogram

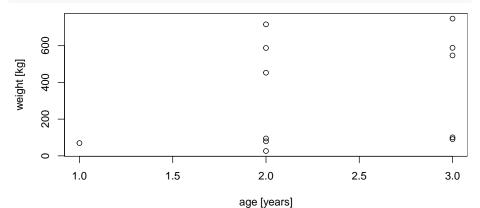
hist(dt\$weight)


Histogram of dt\$weight

Different plot types

Box-wishker plot

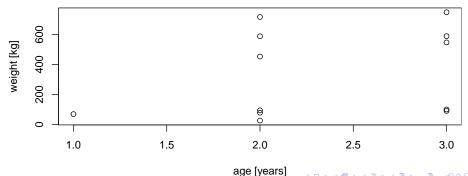
boxplot(dt\$weight)


Subsection 1

Styling a plot

Titles and lables

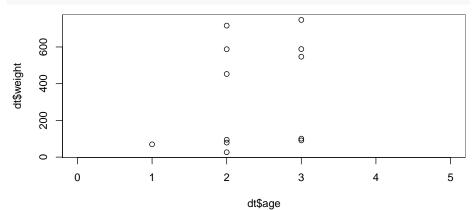
Scatterplot: Changing axis labels


```
plot(y = dt$weight, x = dt$age,
     xlab = "age [years]", ylab = "weight [kg]")
```


Titles and lables

Scatterplot: adding a **title**

mammals

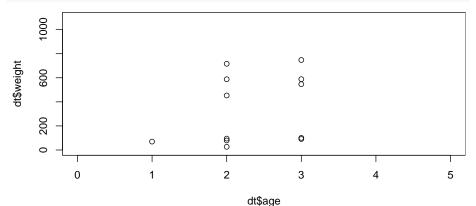


Adjusting the axis

Scatterplot: Changing axis limits

```
plot(y = dt$weight, x = dt$age,

x = c(0, 5))
```

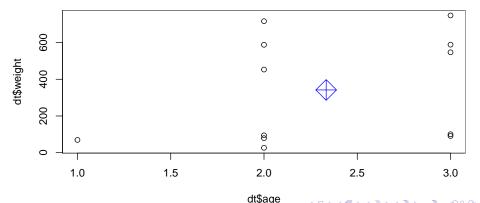


Adjusting the axis

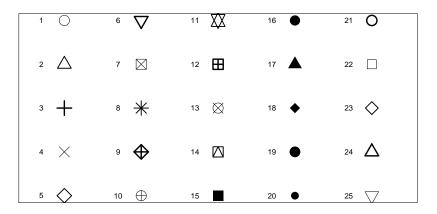
Scatterplot: Changing axis limits

```
plot(y = dt$weight, x = dt$age,

x = c(0, 5), y = c(0, 1100)
```



Color, shape and size

Scatterplot: Changing color, shape and size



Color, shape and size

Scatterplot: Adding points

Color, shape and size

Section 4

Summary

What functions did we learn?

- mean(), median(), var(): aggregation functions
- rep(): repeat input
- factor(): create variable of categories
- plot(): scatterplot
- plot(..., type = '1'): line plot
- points(): add points to plot
- hist(): histogram
- boxplot(): draw a box-wishkers plot

Section 5

Exercises

Exercises

Use of the plot function using terrestial ecology data:

- 1 In Chapter 16 of Zuur et al. (2009), a study is presented analysing numbers of amphibians killed along a road in Portugal using generalised additive mixed modelling techniques. In this exercise, we use the plot command to visualise a segment of the data. Open the file Amphibian_road_Kills.xls, prepare a spreadsheet, and import the data into R. Download:
 - http://high stat.com/Books/Book3/More Data.zip
- 2 The variable, TOT_N, is the number of dead animals at a sampling site, OLIVE is the number of olive groves at a sampling site, and D Park is the distance from each sampling point to the nearby natural park. Create a plot of TOT_N versus D_park. Use appropriate labels.

Alain Zuur, Elena N Ieno, and Erik Meesters. *A Beginner's Guide to R.* Springer Science & Business Media, 2009.